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Fig. 1: Our SEEC framework enables a Booster T1 humanoid robot to perform stable loco-manipulation tasks while dynamic locomotion.
Demonstrated skills include (A-D) holding a flexible chain while walking, (E) wiping a whiteboard surface with teleoperation, and (F)
carrying a plate of snacks while walking. In (A-D), our SEEC framework (A, C) enables the robot to firmly hold the chain and suppress
oscillatory dynamics, whereas the IK baseline (B, D) induces large oscillations that eventually cause the chain to drop. In (F), our SEEC
framework (left arm) successfully kept the snacks in the plate, whereas the IK baseline (right arm) failed and dropped the snacks.

Abstract— Arm end-effector stabilization is essential for hu-
manoid loco-manipulation tasks, yet it remains challenging
due to the high degrees of freedom and inherent dynamic
instability of bipedal robot structures. Previous model-based
controllers achieve precise end-effector control but rely on
precise dynamics modeling and estimation, which often struggle
to capture real-world factors (e.g., friction and backlash) and
thus degrade in practice. On the other hand, learning-based
methods can better mitigate these factors via exploration and
domain randomization, and have shown potential in real-world
use. However, they often overfit to training conditions, requiring
retraining with the entire body, and still struggle to adapt
to unseen scenarios. To address these challenges, we propose

a novel stable end-effector control (SEEC) framework with
model-enhanced residual learning that learns to achieve precise
and robust end-effector compensation for lower-body induced
disturbances through model-guided reinforcement learning
(RL) with a perturbation generator. This design allows the
upper-body policy to achieve accurate end-effector stabilization
as well as adapt to unseen locomotion controllers with no
additional training. We validate our framework in different
simulators and transfer trained policies to the Booster T1
humanoid robot. Experiments demonstrate that our method
consistently outperforms baselines and robustly handles diverse
and demanding loco-manipulation tasks.
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I. INTRODUCTION

Humanoid robots promise seamless integration into human
environments, where they must walk and manipulate simulta-
neously. From carrying objects while moving to performing
collaborative tasks [1]-[3], this capability is fundamental
for practical humanoid deployment (see the tasks shown
in Fig. [T). Yet, achieving stable and precise control of the
arm end-effector during dynamic locomotion remains an
open challenge. Even modest base movements could induce
large accelerations at the arm end-effector, causing tracking
errors, destabilizing contact forces, and ultimately limiting
the utility of humanoids in real-world settings.

Recently, learning-based approaches [4]-[7] have sought
to achieve humanoid loco-manipulation by training end-to-
end reinforcement learning (RL) policies. While effective at
capturing nonlinearities and handling uncertainty, these poli-
cies often rely on imitating joint or task reference trajectories
[8]-[10], and struggle to ensure accurate end-effector stabi-
lization. For example, in HOVER [10], uncontrolled hand
motions emerge as a byproduct of locomotion. Prior work
[7] has attempted to stabilize end-effector control by directly
penalizing its acceleration, but this approach heavily relies
on policy optimization to “discover” the right compensation
strategy. Additionally, the learned behavior degenerates into
static hand-holding motions, limiting general applicability.
Moreover, when tasks require reactive whole-body coordi-
nation, instability in end-effector control is exacerbated by
sudden locomotion disturbances. Conventional RL training,
as in [7], fails to provide robustness under such out-of-
distribution (OOD) scenarios.

Inspired by model-based approaches [11]-[15], which
achieve precise stabilization through dynamics modeling and
online estimation, we introduce SEEC: Stable End-Effector
Control, a model-enhanced RL framework for humanoid
loco-manipulation. SEEC leverages model-based expertise
to provide analytic acceleration compensation signals dur-
ing training. Instead of relying on naive penalization, the
compensation torque from the model-based formulation is
distilled into the RL policy, addressing instability in a more
principled manner.

Furthermore, unlike prior works that jointly train manipu-
lation and locomotion policies, we introduce a perturbation
generation strategy that exposes the upper-body policy to
a wide spectrum of locomotion-induced disturbances. By
modeling these disturbances as base movement patterns,
the upper-body controller learns to maintain stable arm
end-effector control independent of any specific locomotion
policy. This modular design not only improves robustness
across diverse walking patterns, allowing seamless transfer
across different walking patterns, including previously un-
seen locomotion controllers, but also facilitates integration
into complex loco-manipulation tasks that demand coherent
whole-body coordination.

Our core contributions can be summarized as follows.

e We propose a model-enhanced residual learning
framework that integrates model-based expertise with

learning-based adaptability, achieving precise accelera-
tion compensation while effectively addressing model
inaccuracies and parameter uncertainties.

o We introduce a base-movement data generation and
perturbation generation strategy that exposes the policy
to a broad spectrum of locomotion-relevant disturbances
during training. This enables the controller to acquire
robust compensation behaviors that can transfer to un-
seen locomotion controllers and gaits without requiring
joint re-training.

o We demonstrate the first deployment of such a hybrid
framework on a full humanoid Booster T1, validating
it both in simulation and on the real hardware via
zero-shot transfer. The system achieves more stable and
precise end-effector control across a variety of loco-
manipulation tasks, compared to the baselines.

II. RELATED WORK

Traditional works on whole-body controllers for legged
and mobile manipulators rely on model-based methods,
which often employ numerical optimization to achieve pre-
cise control [16]-[19]. Although effective, these approaches
depend on accurate dynamics modeling and contact schedul-
ing, which are difficult to maintain in complex or un-
structured environments. In contrast, learning-based methods
have rapidly advanced humanoid whole-body control, driven
by reinforcement learning (RL) and imitation learning (IL)
[1]1, [2], [4], [6], [9], [20]-[22]. These frameworks pro-
duce expressive and robust behaviors, but achieving accu-
rate and stable end-effector control remains a fundamental
challenge. The difficulty arises because locomotion-induced
disturbances rapidly amplify tracking errors, especially dur-
ing agile maneuvers or in dynamic environments. SoFTA
[7] attempts to stabilize the end-effector by penalizing its
acceleration in the reward function. However, this approach
often degenerates into static hand-holding behaviors and
does not generalize to diverse loco-manipulation tasks. By
contrast, we show that compensating for the torque needed to
account for locomotion-induced disturbances enables effec-
tive stabilization across diverse walking motions, including
motions produced by controllers not seen during training.

Effective control of manipulators or arms on mo-
bile/legged robots is crucial to achieve expressive motion
and thus solve complex tasks. To manage complexity, many
recent works adopt a decoupled architecture, splitting into
upper-body and lower-body modules [4], [7], [9], [15], [23].
Ma et al. [15] model the influence of the manipulator
on locomotion as a disturbance, training the locomotion
controller to compensate. While this improves gait stability,
it sidesteps the harder problem of stabilizing the arm under
dynamic base motion. Moreover, existing frameworks [7]
jointly train locomotion and manipulation policies, coupling
them tightly. This prevents modular reuse and limits robust-
ness: when deployed with different locomotion controllers, or
in the face of the inevitable dynamically changing real-world
environments, the upper-body policy cannot adapt to unseen
disturbances and often fails. Our framework departs from this



paradigm. We explicitly model lower-to-upper body coupling
and introduce a perturbation generation strategy, which
independently trains the upper-body controller to compensate
for a wide range of locomotion-induced disturbances. This
design enables stable and precise end-effector control that
handles unseen perturbations in the real world and even
maintains performance across locomotion controllers.
Recent works have explored how to combine MPC and
RL controllers [1]. One line of remarkable research uses a
model-based controller or trajectory optimizer to supervise
learning, where the RL policies imitate expert actions [8],
[24]-[26]. Another line blends outputs from RL and MPC,
using MPC for constraint satisfaction and RL for adaptability
[27], [28]. These approaches improve sample efficiency
and stability, but are generally evaluated on flat terrain or
simplified tasks and rarely address the unique challenge
of maintaining arm end-effector stability during dynamic
loco-manipulation. In this work, we adopt a residual policy
learning approach [27], [29], but tailored for humanoid loco-
manipulation, achieving robust end-effector stabilization.

IIT. METHOD

We formulate our control problem as the coordination of
two controllers: (1) a lower-body controller responsible for
locomotion, and (ii) an upper—body controller responsible
for manipulation tasks. Both policies are trained in IsaacLab
[30] and modeled as Markov Decision Processes (MDPs).
At time t, the agent (each policy) receives observation oy,
and then samples an action a; ~ 7(-|o;) according to policy
7 and transitions to a new observation o;y; while receiving
a reward r(o¢,a;). The goal of the agent is to maximize
the expected return E[3°  ~'r;], where v € [0,1) is the
discount factor.

In our framework, the lower-body policy is trained to

achieve stable and robust locomotion, following conventional
sim-to-real training pipelines for robust lower-body control
works [31]—-[33]. This allows it to handle diverse locomotion
tasks without additional adaptation. The main difficulty
lies in the upper-body control, which compensates for the
disturbances induced by the freely moving base. To make
this problem tractable, we introduce two assumptions:
Assumption 1: Negligible arm-to-base back—coupling. The
arms are dynamically light relative to the lower body. Control
actions in the arms induce negligible reaction forces on the
base, allowing us to model base motion as an exogenous
input when computing compensation torques.
Assumption 2: Robust locomotion controller. The loco-
motion controller is robust enough to maintain balance and
track desired trajectories despite disturbances generated by
arm movements and control torques.

With the first assumption, we can simplify the disturbance
model by treating the base motion as independent of arm
movements. This allows us to focus solely on compensating
for external base motion and ignore the lower-body’s dy-
namic response to the upper-body. The second assumption
allows us to design a controller without torque constraints.

A. Model-Enhanced Residual Learning

We frame upper-body stabilization as controlling an
arm subject to disturbances from a moving base. Our
method trains an RL residual policy that actively counter-
acts these locomotion-induced disturbances through a three-
stage pipeline: (i) simulate base-induced inertial effects in
a physically consistent manner, (ii) compute the analytic
compensation torque that can cancel the resulting arm end-
effector accelerations, and (iii) distill these signals into policy
via reward reshaping, guiding it to output a joint command
that stabilizes the arm end-effector. The overall framework
is illustrated in Fig. 2]

1) Simulated Base Acceleration: Directly applying spa-
tial accelerations to a floating base in simulation is nu-
merically unstable due to the nonlinear inverse dynamics
problem. Instead, we emulate base motion on a fixed-base
model by injecting the equivalent fictitious wrench that would

be induced by a generic base twist Vj, = [v, ;w, |7 € se(3)
and spatial acceleration 4, = [9);w,]" € RS. Under

Assumption 1, for each link of mass m and inertia I located
at position r relative to the base with local velocity v, the
induced inertial force and torque are F}, = m(—o, —wp X 7 —
wp X (wb X T) —2wb X ’U) and Tb = —I(.Db—wb X (Iwb). The
terms correspond respectively to linear, Euler, centrifugal,
and Coriolis forces, plus angular-acceleration and gyroscopic
torques. Together, they reproduce the accelerations experi-
enced under real base motion, but can be applied stably to
a fixed-base model.

To approximate locomotion-induced perturbations, we
construct base acceleration signals from two characteristic
sources: (i) an impulse acceleration signal from the foot-
ground reaction force, and (ii) a rhythmic sway from the
body’s center of mass (CoM) shifting with each step [34].
We represent the composed signal as

N
=> | Py 9t Th) + si sin (2t /Ti + ¢1) [, (D)
k=1

Foot contact

Periodic CoM swing
impulse

where ¢(t; T) is a Gaussian impulse with standard deviation
0.01s and unit peak amplitude, p, € RS is the impulse
amplitude, s, € RS is the oscillation amplitude, and ¢y,
is a phase offset. We sample disturbance parameters to
ensure their coverage of a diverse range of realistic signals.
The base motion periods {7} | are drawn from a log-
uniform distribution in the range [0.64 s, 1.28 8], covering the
range of natural human-like gait cycles while avoiding bias
toward short or long strides. Impulse amplitudes p,, are sam-
pled from [—100m/s?, 100 m/s?]%, spanning strong ground-
contact transients. Oscillation amplitudes s; are sampled
from [—~10m/s?,10m/s?]%, representing lateral and vertical
CoM sways. Phase offsets ¢y are sampled uniformly from
[—7, 7] to generate diverse periodic acceleration profiles.
This random sampling procedure produces a rich set of
disturbance profiles that capture the variability of realistic
base acceleration signals. By repeatedly exposing the policy
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Fig. 2: System framework overview of SEEC. Our SEEC framework decouples the humanoid loco-manipulation controller into upper-
body and lower-body controllers. The figure describes our core upper-body reinforcement learning (RL) module, which trains a residual
policy that compensates lower-body induced disturbances. We leverage model-based acceleration compensation signals to guide RL training,
ensuring more principled end-effector stability than naive penalization. Additionally, we generate base acceleration profiles to simulate
external perturbations to promote robustness to unseen locomotion controllers. For the deployment, we transfer trained upper-body and

lower-body policies to the robot without additional joint training.

to such disturbances during training, we encourage it to learn
compensation strategies that are robust to different walking
styles, contact timings, and gait controllers.

2) Compensation Torque: In a fixed-base model, the lo-
cal end—effector acceleration is al% = J(q)j+ J(¢)q, where
J(q) € R%*™ is the end-effector Jacobian at configuration
qg € R", and ¢ € R",§ € R" are the joint velocity and ac-
celeration with n-DoF of the arm. With base motion (V}, A;),
the global end—effector acceleration is af = ab®e 4 aloc,
where ¢ = v, + 2wy X VI + wp X (wp X 7I) 4y x rIC
for given end-effector velocity ! and displacement ! in
the local frame.

In addition, fictitious wrenches on the arm links (Sec. m
[AT) induce a local responsive acceleration

tresp = J ()M () X7 Jila) T[E} )

where B is the number of linkages, M (q) is the joint-space
inertia matrix, J;(q¢) € R%*™ is a Jacobian for link i and
[Ff 7577 T]T € RS denotes the fictitious wrench acting on
a link ¢ from the base.

To cancel these effects under Assumption 2, we compute
a compensating acceleration aomp by exerting a joint torque
Teomp € R™, such that ate’ise + Gresp + Gcomp ~ 0. Using
the operational-space formulation, and the minimum-norm
torque [35ﬂ renders

TaTZ;L T]T

Tcomp — _J(Q)TA(Q) ( 3)

where A(q) € R6X6 is the operational-space iner-
tia matrix. This torque is combined with task-oriented
controller signal Ty (e.g., operational space tracking
[36] of x4es and 4e5) to stabilize the end-effector.

base
ce T aresp)

I'While we adopt the minimum-norm solution, alternative formulations
are possible that can incorporate a constraint solver with additional cost
functions and constraints.

ie. Task = J(Q)T[A(Q) (Kp(mdes - x) + Xd(ftdes - IL’)) +
Q(q,q) + G(q)], where Q(q,q) is the operational-space
centrifugal/Coriolis term, G(q) is the operational-space grav-
itational term, and K,,, K, are operational-space gains.

3) Compensation Residual Policy Training: Directly
deploying the analytically computed compensation torque
Teomp ON hardware is infeasible, due to sensor noise, missing
angular acceleration signals on the hardware IMU, and sim-
to-real gap, such as motor delays and friction. Instead, we
train an RL policy which outputs joint targets to a low—level
PD controller that matches the desired compensation torque
Teomp- The observation space consists of the history of an
end-effector command and proprioception data - IMU data
(v, wp), upper-body joint states, and previous actions. Let
TPD = Kp (Qdes - Q) + Ky (q'des - Q) be the torque
generated by the PD loop from the policy’s targets qges,
where target joint velocities are fixed to be zero (Gges = 0). In
addition, we add an operational-space tracking control torque
Twsk 10 achieve ideal target-tracking behavior. To improve
robustness, we inject observation noise and friction during
training, and regularize both control effort and end-effector
accelerations to discourage excessive actuation and jittering.
The reward encourages the measured torque Tmeasured O
match the ideal torque Teomp + Trask:

4)

along with auxiliary rewards that penalize the global accel-
erations similar to [7], action smoothness, and tracking tol-
erances. The policy is trained with PPO [37] using recurrent
actor—critic networks with hidden sizes [256, 128, 128].

In this work, we set an end-effector target in the local
frame. In this case, the policy minimizes the local tracking
error while stabilizing the end-effector under base perturba-
tions. Although target tracking and stabilization objectives

rr = — ||Tmeasured - (Tcomp + Ttask)”Za



Components Equations Weights (stddev.)

Alive 1 10

Position exp(—|lr™ — |2 /o2)* 10 (0.1)

Orientation exp(—[|Q™ & Q||*/o2)* 10 (0.1)

Torque guide [ Tmeasured — (Teomp + Ttask) || —0.1
exp form exp (—|| Tmeasured — (Teomp + Teask) ||) 5

EE Lin. Acc. [|aell -0.1
exp form exp(—|lac||?/o2) 1.0 (3.0)

EE Ang. Acc. [|ecell —0.01
exp form exp(—|lac||?/a2) 1.0 (10)

Action rates [[@prey — @current || —0.1

TABLE I: Summary of upper-body training rewards. *Note that
for position and orientation tracking rewards, we assign a small
tolerance of 0.05m and 0.1rad each. All norms in the table are
Lo norm. (©: quaternion subtraction)

may conflict, we address this issue by adding a tolerance
margin in the tracking reward functions described in Table.
This allows the policy to balance precise tracking with robust
stabilization.

Finally, to achieve greater stability, the target can be
specified in the world frame and converted into the local
frame at runtime. However, this requires an accurate, real-
time estimation of the robot’s world pose, which we leave
for future work.

B. Locomotion Training

Following state-of-the-art locomotion works [32], [33],
[38], the policy observation space consists of four com-
ponents: (i) clock signals (sine/cosine of gait phase), (ii)
proprioception (base angular velocity, joint states, previous
actions), (iii) base velocity command, and (iv) 5-step ob-
servation history for short-term memory. The action space
controls 13 lower-body joints via target positions tracked by
PD controllers.

For the design of reward functions, we build upon the
formulations provided in Booster Gym [31], which include
balance stability, smoothness, and velocity tracking task
progress with carefully assigned weights. Robustness is
improved by randomizing upper-body joint targets, end-
effector mass, and environment parameters across episodes.
Locomotion policies are trained in IsaacLab using PPO. Both
actor and critic are MLPs with hidden sizes [256, 128, 128].

IV. EXPERIMENTS AND RESULTS

In the experiments, we use the Booster T1 humanoid,
which stands 1.2 m tall and possesses 29 degrees of freedom.

A. Simulation Results

To systematically demonstrate the advantages of our
framework, we address the following key questions:
Q1: Does our model-enhanced residual learning controller
achieve superior end-effector stability?
Q2: How much does our perturbation generation strategy
improve end-effector stability?
Q3: Does our perturbation generation strategy enable robust
generalization to previously unseen locomotion controllers?

LinAcc (m/s?) | AngAcc (rad/s?) |

Task Method mean max mean max
IK 5.734+0.15 15.240.29 18.1£0.58 74.3%1.44
RL w/0 Sim. Acc. 401:|:().()T 16.2£0.70 18.5£0.37 78.9+£3.27
RL W sim. Acc. 3.914+0.05 16.8+1.14 18.8£0.32 69.643.90
Stepping Ours wW/o Ty 3.35£0.02 9.484+0.34 16.440.09 78.4+1.79
Ours w/o 7, 242+0.04 6.404+0.29 13.34+0.38 69.3+11.7
Ours w/0 Sim. Ace. 2.6040.04 8.414+0.44 13.54£0.30 57.840.34
Ours 2.261+0.02 5.92+0.20 11.940.18 56.9£0.46
IK 5.28+0.27 15.5+0.63 17.34+0.35 77.4+£4.78
RL w/0 Sim. Ace.  3.5440.20 15.74£1.57 16.7£1.10 77.4£7.42
RL w sim. Acc. 3.4140.06 12.3£0.85 16.34+0.51 58.6+£3.95
Forward Ours w/o T 2.67+£0.15 7.04+0.58 12.04+0.54 47.3+1.85
Ours w/o 7 2.384+0.08 6.59+£1.64 13.14+0.55 59.3+7.70
Ours wW/0 Sim. Ace. 2.454+0.02 8.46+0.33 12.3£0.10 42.840.14
Ours 2.294+0.01 5.56+£0.19 11.4+0.11 43.5+1.51
1K 5.9540.12 18.6£6.99 19.54+6.62 94.0£37.9
RL w/0 Sim. Ace.  4.184+0.13 17.4£0.59 19.240.55 83.8+£1.75
RL W sim. Acc. 5.7440.15 15.24£0.29 18.14+0.58 74.3+1.44
Lateral  Ours w/o Ty 3.4340.09 11.94£0.24 17.440.38 95.94+1.76
Ours w/o 7, 2.67£0.03 6.73+0.30 13.440.07 55.7£1.66
Ours w/0 Sim. Ace. 3.2140.02 12.0+0.21 14.4£0.08 62.841.96
Ours 2.401+0.00 6.03£0.63 12.240.06 54.8+0.50
IK 6.064+0.50 16.7i2,17 21.04£2.41 89.448.40
RL w/0 sim. Ace.  4.8740.13 20.24+2.76 22.740.53 100.45.38
RL w Sim. Acc. 4.31£0.09 17.8%0. (»l 19.84+0.28 72.5£1.91
Rotation Ours w/0 Tk 3.764+0.56 8.904+0.86 16.941.15 67.4+£13.7
Ours w/o 7 2.934+0.01 7.48+0.11 15.640.08 72.84+0.78
Ours wW/0 Sim. Acc. 2.8940.03 9.67+0.75 14.54£0.14 67.4£1.29
Ours 2.754+0.01 7.1340.95 14.1£0.09 66.6+t1.44

TABLE II: Benchmark results (MuJoCo) on end-effector stability.

To address the above questions, we evaluate our proposed
framework using two key metrics: (1) end-effector stability,
measuring the effectiveness of acceleration compensation;
(2) robustness, reflecting the capability to adapt across
diverse and unseen locomotion skills.

For end-effector stability, we compare the acceleration
compensation of several baselines: (1) an /K-based approach
(2) learning-based approaches with or without our pertur-
bation generation (denoted as RL w or w/o Sim. Acc.),
trained in a fixed-base scenario, and (3) our proposed SEEC
framework without operational space torque, and (4) our
SEEC framework without torque guide reward.

For robustness, we assess performance under differ-
ent locomotion policies by comparing: (1) the Pre-Train
framework, trained with a specific pretrained locomotion
policy provided beforehand, (2) the Co-Train framework,
where we adopt the training setup from [7], locomotion
and manipulation policies are trained simultaneously, while
having the same control frequency for fair comparison. For
the evaluation, we replace the locomotion part of each
trained framework with a new locomotion policy trained with
Sec. [l-B] and compare the end-effector stability. We denote
this experiment as testing “With Unseen Locomotion Policy”.

To ensure a comprehensive evaluation, we design a diverse
set of simulation tasks that expose the robot to distinct
locomotion scenarios and dynamic variations, including: (a)
stepping in place, (b) forward walking at 0.4m/s, (c) lateral
walking at 0.4 m/s, and (d) rotational walking at 0.4 rad/s.
For each scenario, we perform three roll-outs and record the
end-effector acceleration in the world frame. Additionally,
for a fair comparison, all the methods share the same K, and
K ; gains for low-level PD control: 10.0 and 0.5, respectively.

Results and Analysis: As shown in Table |lI} our proposed
SEEC framework outperforms the baselines in end-effector



With Trained Locomotion Policy

With Unseen Locomotion Policy

LinAcc (m/s?)

AngAcc (rad/sz) LinAcc (m/sz) AngAcc (rad/sz)

Task Method mean max mean max mean max mean max

RL (Pre-Train) 6.57+£0.27 18241.39 28.0£0.34 84.4+7.94 - — — -
Stepping RL (Co-Train) 581+0.11  262+1.07 24840.44 143.49.38  10.6+0.04 25.740.46 48.5+0.44 173.45.88

. Trai . 5 ” . -

Ours (w Pre Tra'm Loco. POl‘le) 3.2740.28  9.89+0. /(,,' 17'5:&“'(‘? 92.7417.1 $3040.02 1844069 26.140.25 04.0+1.13

Ours (w Co-Train Loco. Policy) 3.07£1.75  11.5£0.42 204+£0.52 158.£1.17

RL (Pre-Train) 5.30+0.30  124+£0.29 21.3%0.44 63.2 £6.79 - — - -
Forward RL (Co-Train) 53640.06 225+0.39 23.940.24 142.4£0.87 829+0.05 23.7+1.87 34.1+0.13 177.411.56

-Trai i 7 86 9.

Ours (w Pre Trgln Loco. Pol‘lcy) 34440.14  11.5£1.07 17.4+£1.86  90.1+£19.0 47640.06 18.041.76 2484027 82.540.68

Ours (w Co-Train Loco. Policy) 4.164£0.05 11.640.525 20.0£0.34 169.413.83

RL (Pre-Train) 6.504+0.23  19.440.35 28241.53 136.41.44 - - - -
Lateral RL (Co-Train) 6.70+0.09  30.14+0.45 27.740.30  141.4£4.60  9.2840.02 25.240.29 40.240.18  168.£5.00

- i i 32 2.73 . L1 . ). 8¢

Ours (w Pre Tra}n Loco. Pol‘lcy) 3.74+0.32  144+£2.73  17.0£1.19  70.74+6.83 4974001 18141.61 2524014 88.044.18

Ours (w Co-Train Loco. Policy) 4.05£0.05  12.4£0.49 21.9+£0.39 156.£12.8

RL (Pre-Train) 6.47+0.47 23.249.03  29.440.16  154.47.44 - - - -
Rotation RL (Co-Train) 6.38+0.14  24.04+1.73 27.04+0.26  135.4+15.5 9.8440.04 27.841.93 42440.40 187.£8.38

. Tra; N H 3 28 C
Ours (w Pre TraAm Loco. PolAlcy) 4.31:&(1.1(71 17.8+0.61  19.8+0.28 72.5+1.91 $2840.12 21.041.82 2724099  104-40.97
Ours (w Co-Train Loco. Policy) 4.15+0.02 12.32£0.31 22.8£0.10  143.£8.56

—: The transfered upper-body policy has failed the locomotion policy due to excessive arm accleration.

TABLE III: Benchmarking results (MuJoCo) on robustness.

acceleration stability across most locomotion tasks. Note that
removing either the operational space torque component or
the torque-guided reward substantially degrades the perfor-
mance. This shows that simulated base accelerations with
these components lead to effective compensation learning.
Additionally, among the three ablation components, remov-
ing the operational space torque leads to the largest per-
formance degradation, 36.11% for mean linear acceleration
and 26.39% for mean angular acceleration, likely because
this term provides a precise tracking signal that enables the
RL policy to focus on learning only the compensation term,
thereby improving overall performance.

Table further demonstrates superior robustness over
both the pre-train and co-train baselines when evaluated un-
der a previously unseen locomotion policy. The pre-training
method fails in all cases due to excessive arm movements,
as the hierarchical training paradigm restricts the state-space
exploration for the manipulation policy. In addition, the co-
trained method exhibits an average degradation of 57.45%
and 60.14% for mean linear and angular acceleration under
an unseen locomotion policy, whereas ours shows an average
degradation of 34.40% and 21.52%. This may be because the
co-training setup relies heavily on coordinated interaction
between the upper-body and lower-body for acceleration
compensation.

B. Hardware results

1) End-effector acceleration comparison: In hardware
demonstrations, we deploy our SEEC framework on the T1
robot. To evaluate the effectiveness of our approach, we
compare our controller against the IK-based baseline on the
real robot and compute the end-effector acceleration from
pose data collected by a motion capture system operating
at 120 Hz, as in Table [Vl To obtain the end-effector ac-
celeration, we apply numerical double differentiation to the
recorded pose trajectories, removing abnormal or noisy mea-
surements, as in Fig. 3] This provides a reliable measure of

how the end-effector moves in a dynamically stable fashion.
We observe consistent results as in the simulation, where

LinAcc (m/sz) 1 AngAcc (rad/s?) 1

Method mean max mean max
IK-Based Method 3.57 +0.46 11.6 £4.63 41.1 £4.31 151. £14.6
SEEC (Ours) 2.82 £0.11 6.36 £0.36 24.2 +4.62 78.6 £9.81

TABLE IV: Real-world evaluation results on end-effector stability.
both linear and angular accelerations remain stabilized over
time. Notably, while the absolute acceleration magnitudes are
in a similar range, our method shows a smoother acceleration
profile, underscoring that our framework is more stable.

2) Solving loco-manipulation tasks: Furthermore, we test
the proposed framework on tasks that require stable arm end-
effector control under dynamic locomotion. The objective is
to compensate for the hand acceleration when the robot is
subject to whole-body motion and ground reaction forces. To
this end, we design a set of representative tasks that combine
locomotion with manipulation involving payloads.

Chain Holding: The T1 robot needs to grasp a chain with
its hands and attempts to minimize its oscillation through
stable motion control during walking. This task requires
minimizing damping oscillations introduced by locomotion
and highlights the robot’s ability to regulate dynamic external
objects, which is shown in Fig. [I]

Mobile Whiteboard Wiping: The robot needs to hold an
eraser with its gripper and wipe a vertical whiteboard while
continuously stepping, with VR teleoperation [39]. The task
requires the robot to maintain stable contact pressure and
smooth wiping, ensuring effective cleaning while compen-
sating for locomotion-induced disturbances.

Plate Holding: The T1 carries a plate of snacks while
walking. This task requires minimizing plate acceleration
to prevent spilling and demands precise stabilization of the
upper-body during movement.

Bottle Holding: The robot carries a bottle of liquid while
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Fig. 3: End-effector acceleration plots in real-world evaluation. The blue line indicates the acceleration profile of our method, and the

dotted red line represents the baseline (IK) method.

walking. To prevent spilling, the robot must suppress oscil-
lations and avoid sudden accelerations.

Results and Analysis. For the Chain Holding task, as in
Fig. |I| (A-D), without acceleration compensation, the chain
exhibits large-amplitude oscillations due to base motion,
leading to a final dropping off from the robot hand. With our
SEEC framework, the robot effectively suppresses oscillatory
dynamics, reducing oscillation amplitude and maintaining
the chain nearly vertical during walking. This highlights the
robustness of our framework in regulating external objects
subject to dynamic excitations. For the Mobile Whiteboard
Wiping task in Fig. [[{E), our framework consistently main-
tains smooth trajectories and steady end-effector contact
forces, leading to clean wiping performance. For the Plate
Holding task, as shown in Fig.[4] the baseline method spills
the snacks as the robot walks. In contrast, our approach
produces stable motions that allow the robot to carry the
plate without spilling. For the Bottle Holding task, as shown
in Fig. [5} the time-lapse shows the liquid shaking violently,
leading to a sudden splash, while our method keeps the bottle
steady with minimized sloshing.

These real-world tasks verify that our framework enables
stable end-effector control under dynamic locomotion. The
results highlight its robustness to disturbances and dynamic
loco-manipulation scenarios.

V. CONCLUSIONS AND DISCUSSION

In this work, we introduce SEEC, a framework designed
to achieve stable end-effector control for humanoid loco-
manipulation. Our approach integrates model-based strate-
gies into a learning-based end-effector controller, leveraging
base acceleration data from simulation to enhance acceler-
ation compensation. Experimental results from simulation
demonstrate that our method consistently outperforms base-
line approaches, yielding reduced end-effector acceleration
and thereby improving stability.

Fig. 4: Plate holding task. With our method, the robot can stably
hold the plate without spilling the snacks, whereas the IK-based
method causes noticeable end-effector oscillations, leading to sig-
nificant spillage.

Our method could benefit from the integration of more
advanced model-based controllers and RL training strategies.
While we have verified the effectiveness of model-enhanced
residual learning, our model can benefit from a model-based
controller that can handle constraints and would promote safe
and stable operation, especially combined with constrained
learning strategies.

Additionally, richer state inputs and more accurate state
estimation would improve compensation and enable global
target tracking. Our policy currently relies on upper-body
proprioceptive input, which by design reacts to disturbances
rather than proactively counteracting them. Whole-body state
estimation could address this limitation and enable global
target tracking to achieve more versatile loco-manipulation
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Fig. 5: Bottle holding task. The left arm is controlled by our
approach, achieving stable holding with minimal liquid surface
vibration, while the right arm is controlled by the IK baseline,
resulting in pronounced liquid oscillations.

tasks, such as collaborative transports.
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